3.1.28 \(\int \frac {\sinh (c+d x)}{a+b \text {sech}^2(c+d x)} \, dx\) [28]

3.1.28.1 Optimal result
3.1.28.2 Mathematica [C] (warning: unable to verify)
3.1.28.3 Rubi [A] (verified)
3.1.28.4 Maple [A] (verified)
3.1.28.5 Fricas [B] (verification not implemented)
3.1.28.6 Sympy [F]
3.1.28.7 Maxima [F]
3.1.28.8 Giac [F]
3.1.28.9 Mupad [B] (verification not implemented)

3.1.28.1 Optimal result

Integrand size = 21, antiderivative size = 47 \[ \int \frac {\sinh (c+d x)}{a+b \text {sech}^2(c+d x)} \, dx=-\frac {\sqrt {b} \arctan \left (\frac {\sqrt {a} \cosh (c+d x)}{\sqrt {b}}\right )}{a^{3/2} d}+\frac {\cosh (c+d x)}{a d} \]

output
cosh(d*x+c)/a/d-arctan(cosh(d*x+c)*a^(1/2)/b^(1/2))*b^(1/2)/a^(3/2)/d
 
3.1.28.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 0.99 (sec) , antiderivative size = 328, normalized size of antiderivative = 6.98 \[ \int \frac {\sinh (c+d x)}{a+b \text {sech}^2(c+d x)} \, dx=\frac {\left (-\frac {(a+4 b) \left (\arctan \left (\frac {\left (\sqrt {a}-i \sqrt {a+b} \sqrt {(\cosh (c)-\sinh (c))^2}\right ) \sinh (c) \tanh \left (\frac {d x}{2}\right )+\cosh (c) \left (\sqrt {a}-i \sqrt {a+b} \sqrt {(\cosh (c)-\sinh (c))^2} \tanh \left (\frac {d x}{2}\right )\right )}{\sqrt {b}}\right )+\arctan \left (\frac {\left (\sqrt {a}+i \sqrt {a+b} \sqrt {(\cosh (c)-\sinh (c))^2}\right ) \sinh (c) \tanh \left (\frac {d x}{2}\right )+\cosh (c) \left (\sqrt {a}+i \sqrt {a+b} \sqrt {(\cosh (c)-\sinh (c))^2} \tanh \left (\frac {d x}{2}\right )\right )}{\sqrt {b}}\right )\right )}{\sqrt {b}}+\frac {a \left (\arctan \left (\frac {\sqrt {a}-i \sqrt {a+b} \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {b}}\right )+\arctan \left (\frac {\sqrt {a}+i \sqrt {a+b} \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {b}}\right )\right )}{\sqrt {b}}+4 \sqrt {a} \cosh (c+d x)\right ) (a+2 b+a \cosh (2 (c+d x))) \text {sech}^2(c+d x)}{8 a^{3/2} d \left (a+b \text {sech}^2(c+d x)\right )} \]

input
Integrate[Sinh[c + d*x]/(a + b*Sech[c + d*x]^2),x]
 
output
((-(((a + 4*b)*(ArcTan[((Sqrt[a] - I*Sqrt[a + b]*Sqrt[(Cosh[c] - Sinh[c])^ 
2])*Sinh[c]*Tanh[(d*x)/2] + Cosh[c]*(Sqrt[a] - I*Sqrt[a + b]*Sqrt[(Cosh[c] 
 - Sinh[c])^2]*Tanh[(d*x)/2]))/Sqrt[b]] + ArcTan[((Sqrt[a] + I*Sqrt[a + b] 
*Sqrt[(Cosh[c] - Sinh[c])^2])*Sinh[c]*Tanh[(d*x)/2] + Cosh[c]*(Sqrt[a] + I 
*Sqrt[a + b]*Sqrt[(Cosh[c] - Sinh[c])^2]*Tanh[(d*x)/2]))/Sqrt[b]]))/Sqrt[b 
]) + (a*(ArcTan[(Sqrt[a] - I*Sqrt[a + b]*Tanh[(c + d*x)/2])/Sqrt[b]] + Arc 
Tan[(Sqrt[a] + I*Sqrt[a + b]*Tanh[(c + d*x)/2])/Sqrt[b]]))/Sqrt[b] + 4*Sqr 
t[a]*Cosh[c + d*x])*(a + 2*b + a*Cosh[2*(c + d*x)])*Sech[c + d*x]^2)/(8*a^ 
(3/2)*d*(a + b*Sech[c + d*x]^2))
 
3.1.28.3 Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.96, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3042, 26, 4621, 262, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sinh (c+d x)}{a+b \text {sech}^2(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {i \sin (i c+i d x)}{a+b \sec (i c+i d x)^2}dx\)

\(\Big \downarrow \) 26

\(\displaystyle -i \int \frac {\sin (i c+i d x)}{b \sec (i c+i d x)^2+a}dx\)

\(\Big \downarrow \) 4621

\(\displaystyle \frac {\int \frac {\cosh ^2(c+d x)}{a \cosh ^2(c+d x)+b}d\cosh (c+d x)}{d}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {\frac {\cosh (c+d x)}{a}-\frac {b \int \frac {1}{a \cosh ^2(c+d x)+b}d\cosh (c+d x)}{a}}{d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\cosh (c+d x)}{a}-\frac {\sqrt {b} \arctan \left (\frac {\sqrt {a} \cosh (c+d x)}{\sqrt {b}}\right )}{a^{3/2}}}{d}\)

input
Int[Sinh[c + d*x]/(a + b*Sech[c + d*x]^2),x]
 
output
(-((Sqrt[b]*ArcTan[(Sqrt[a]*Cosh[c + d*x])/Sqrt[b]])/a^(3/2)) + Cosh[c + d 
*x]/a)/d
 

3.1.28.3.1 Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4621
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_ 
)]^(m_.), x_Symbol] :> With[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[-ff/f 
   Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*((b + a*(ff*x)^n)^p/(ff*x)^(n*p)), 
x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/ 
2] && IntegerQ[n] && IntegerQ[p]
 
3.1.28.4 Maple [A] (verified)

Time = 1.80 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.94

method result size
derivativedivides \(\frac {1}{d a \,\operatorname {sech}\left (d x +c \right )}+\frac {b \arctan \left (\frac {b \,\operatorname {sech}\left (d x +c \right )}{\sqrt {a b}}\right )}{d a \sqrt {a b}}\) \(44\)
default \(\frac {1}{d a \,\operatorname {sech}\left (d x +c \right )}+\frac {b \arctan \left (\frac {b \,\operatorname {sech}\left (d x +c \right )}{\sqrt {a b}}\right )}{d a \sqrt {a b}}\) \(44\)
risch \(\frac {{\mathrm e}^{d x +c}}{2 a d}+\frac {{\mathrm e}^{-d x -c}}{2 a d}+\frac {\sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a b}\, {\mathrm e}^{d x +c}}{a}+1\right )}{2 a^{2} d}-\frac {\sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {-a b}\, {\mathrm e}^{d x +c}}{a}+1\right )}{2 a^{2} d}\) \(119\)

input
int(sinh(d*x+c)/(a+b*sech(d*x+c)^2),x,method=_RETURNVERBOSE)
 
output
1/d/a/sech(d*x+c)+1/d*b/a/(a*b)^(1/2)*arctan(b*sech(d*x+c)/(a*b)^(1/2))
 
3.1.28.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 215 vs. \(2 (39) = 78\).

Time = 0.27 (sec) , antiderivative size = 595, normalized size of antiderivative = 12.66 \[ \int \frac {\sinh (c+d x)}{a+b \text {sech}^2(c+d x)} \, dx=\left [\frac {\sqrt {-\frac {b}{a}} {\left (\cosh \left (d x + c\right ) + \sinh \left (d x + c\right )\right )} \log \left (\frac {a \cosh \left (d x + c\right )^{4} + 4 \, a \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + a \sinh \left (d x + c\right )^{4} + 2 \, {\left (a - 2 \, b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, a \cosh \left (d x + c\right )^{2} + a - 2 \, b\right )} \sinh \left (d x + c\right )^{2} + 4 \, {\left (a \cosh \left (d x + c\right )^{3} + {\left (a - 2 \, b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) - 4 \, {\left (a \cosh \left (d x + c\right )^{3} + 3 \, a \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + a \sinh \left (d x + c\right )^{3} + a \cosh \left (d x + c\right ) + {\left (3 \, a \cosh \left (d x + c\right )^{2} + a\right )} \sinh \left (d x + c\right )\right )} \sqrt {-\frac {b}{a}} + a}{a \cosh \left (d x + c\right )^{4} + 4 \, a \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + a \sinh \left (d x + c\right )^{4} + 2 \, {\left (a + 2 \, b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, a \cosh \left (d x + c\right )^{2} + a + 2 \, b\right )} \sinh \left (d x + c\right )^{2} + 4 \, {\left (a \cosh \left (d x + c\right )^{3} + {\left (a + 2 \, b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + a}\right ) + \cosh \left (d x + c\right )^{2} + 2 \, \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + \sinh \left (d x + c\right )^{2} + 1}{2 \, {\left (a d \cosh \left (d x + c\right ) + a d \sinh \left (d x + c\right )\right )}}, \frac {2 \, \sqrt {\frac {b}{a}} {\left (\cosh \left (d x + c\right ) + \sinh \left (d x + c\right )\right )} \arctan \left (\frac {{\left (a \cosh \left (d x + c\right )^{3} + 3 \, a \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + a \sinh \left (d x + c\right )^{3} + {\left (a + 4 \, b\right )} \cosh \left (d x + c\right ) + {\left (3 \, a \cosh \left (d x + c\right )^{2} + a + 4 \, b\right )} \sinh \left (d x + c\right )\right )} \sqrt {\frac {b}{a}}}{2 \, b}\right ) - 2 \, \sqrt {\frac {b}{a}} {\left (\cosh \left (d x + c\right ) + \sinh \left (d x + c\right )\right )} \arctan \left (\frac {{\left (a \cosh \left (d x + c\right ) + a \sinh \left (d x + c\right )\right )} \sqrt {\frac {b}{a}}}{2 \, b}\right ) + \cosh \left (d x + c\right )^{2} + 2 \, \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + \sinh \left (d x + c\right )^{2} + 1}{2 \, {\left (a d \cosh \left (d x + c\right ) + a d \sinh \left (d x + c\right )\right )}}\right ] \]

input
integrate(sinh(d*x+c)/(a+b*sech(d*x+c)^2),x, algorithm="fricas")
 
output
[1/2*(sqrt(-b/a)*(cosh(d*x + c) + sinh(d*x + c))*log((a*cosh(d*x + c)^4 + 
4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh(d*x + c)^4 + 2*(a - 2*b)*cosh(d 
*x + c)^2 + 2*(3*a*cosh(d*x + c)^2 + a - 2*b)*sinh(d*x + c)^2 + 4*(a*cosh( 
d*x + c)^3 + (a - 2*b)*cosh(d*x + c))*sinh(d*x + c) - 4*(a*cosh(d*x + c)^3 
 + 3*a*cosh(d*x + c)*sinh(d*x + c)^2 + a*sinh(d*x + c)^3 + a*cosh(d*x + c) 
 + (3*a*cosh(d*x + c)^2 + a)*sinh(d*x + c))*sqrt(-b/a) + a)/(a*cosh(d*x + 
c)^4 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh(d*x + c)^4 + 2*(a + 2*b) 
*cosh(d*x + c)^2 + 2*(3*a*cosh(d*x + c)^2 + a + 2*b)*sinh(d*x + c)^2 + 4*( 
a*cosh(d*x + c)^3 + (a + 2*b)*cosh(d*x + c))*sinh(d*x + c) + a)) + cosh(d* 
x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 + 1)/(a*d*cosh( 
d*x + c) + a*d*sinh(d*x + c)), 1/2*(2*sqrt(b/a)*(cosh(d*x + c) + sinh(d*x 
+ c))*arctan(1/2*(a*cosh(d*x + c)^3 + 3*a*cosh(d*x + c)*sinh(d*x + c)^2 + 
a*sinh(d*x + c)^3 + (a + 4*b)*cosh(d*x + c) + (3*a*cosh(d*x + c)^2 + a + 4 
*b)*sinh(d*x + c))*sqrt(b/a)/b) - 2*sqrt(b/a)*(cosh(d*x + c) + sinh(d*x + 
c))*arctan(1/2*(a*cosh(d*x + c) + a*sinh(d*x + c))*sqrt(b/a)/b) + cosh(d*x 
 + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 + 1)/(a*d*cosh(d 
*x + c) + a*d*sinh(d*x + c))]
 
3.1.28.6 Sympy [F]

\[ \int \frac {\sinh (c+d x)}{a+b \text {sech}^2(c+d x)} \, dx=\int \frac {\sinh {\left (c + d x \right )}}{a + b \operatorname {sech}^{2}{\left (c + d x \right )}}\, dx \]

input
integrate(sinh(d*x+c)/(a+b*sech(d*x+c)**2),x)
 
output
Integral(sinh(c + d*x)/(a + b*sech(c + d*x)**2), x)
 
3.1.28.7 Maxima [F]

\[ \int \frac {\sinh (c+d x)}{a+b \text {sech}^2(c+d x)} \, dx=\int { \frac {\sinh \left (d x + c\right )}{b \operatorname {sech}\left (d x + c\right )^{2} + a} \,d x } \]

input
integrate(sinh(d*x+c)/(a+b*sech(d*x+c)^2),x, algorithm="maxima")
 
output
1/2*(e^(2*d*x + 2*c) + 1)*e^(-d*x - c)/(a*d) - 1/2*integrate(4*(b*e^(3*d*x 
 + 3*c) - b*e^(d*x + c))/(a^2*e^(4*d*x + 4*c) + a^2 + 2*(a^2*e^(2*c) + 2*a 
*b*e^(2*c))*e^(2*d*x)), x)
 
3.1.28.8 Giac [F]

\[ \int \frac {\sinh (c+d x)}{a+b \text {sech}^2(c+d x)} \, dx=\int { \frac {\sinh \left (d x + c\right )}{b \operatorname {sech}\left (d x + c\right )^{2} + a} \,d x } \]

input
integrate(sinh(d*x+c)/(a+b*sech(d*x+c)^2),x, algorithm="giac")
 
output
sage0*x
 
3.1.28.9 Mupad [B] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.89 \[ \int \frac {\sinh (c+d x)}{a+b \text {sech}^2(c+d x)} \, dx=\frac {\mathrm {cosh}\left (c+d\,x\right )}{a\,d}-\frac {b\,\mathrm {atan}\left (\frac {a\,\mathrm {cosh}\left (c+d\,x\right )}{\sqrt {a\,b}}\right )}{a\,d\,\sqrt {a\,b}} \]

input
int(sinh(c + d*x)/(a + b/cosh(c + d*x)^2),x)
 
output
cosh(c + d*x)/(a*d) - (b*atan((a*cosh(c + d*x))/(a*b)^(1/2)))/(a*d*(a*b)^( 
1/2))